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ABSTRACT 

We ex tend  the  resul ts  of  Shalev [Sh] on t he  orders of  nons ingula r  

der ivat ions of f ini te-dimensional  non-ni lpotent  modu la r  Lie algebras.  

1. I n t r o d u c t i o n  

Aner Shalev addressed the following problem in [Sh]. 

PROBLEM 1: Which are the possible orders n o[ nonsingular derivations o[ tinite- 

dimensional non-nilpotent Lie algebras o[ prime characteristic p? 

The significance of Problem 1 is well illustrated in the Introduction of Shalev's 

paper [Sh], to which we refer for a broader discussion. Here we will just mention 

a couple of relevant facts. On the one hand, the fact that  n = p - 1 is not a 

solution for Problem 1 plays a crucial role in the effective proof given by Shalev in 

[Shl] of the strongest of the eoelass conjectures of Leedham-Green and Newman 

for pro-p groups [LGN]. On the other hand, the fact that  Problem 1 does have 

solutions has implications for the coelass theory of Lie algebras. In fact, for all 

k >_ 2 there exist finite-dimensional simple Lie algebras of characteristic p which 

have nonsingular derivations of order pk _ 1, namely certain algebras discovered 
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by Albert and Frank [AF] (nowadays also known as Hamiltonian of type w2, see 

for example [BKK]); these were employed in [Sh2] to construct the first examples 

of non-soluble modular graded Lie algebras of maximal class, thus disproving the 

analogues of Conjectures C and D of [LGN] for modular graded Lie algebras. 

By means of an application of Engel's theorem, Shalev showed that  Problem 1 

is closely related to the following number-theoretic problem in finite fields. 

PROBLEM 2: For which numbers n is there an element a E Fp (the algebraic 

closure of  the field of p elements Fp) such that ((~ + )~)n ~_ 1 for all A E ]~p ? 

More precisely, Shalev proved that  if a number n satisfies the condition in 

Problem 1, then it also satisfies the condition in Problem 2. (This was stated 

only for n prime to p, since both problems are easily reduced to this case, but 

is true in general, because if n satisfies either condition, then any multiple of 

n also does.) Shalev also remarked that  "it is unlikely that  the converse also 

holds". However, we show in Section 2 of this note that  the converse actually 

holds. Therefore, the two problems are fully equivalent. 

From the above discussion it is clear that  the admissible numbers n for Prob- 

lem 1 or, equivalently, for Problem 2, include those of the form pk _ 1 for all k _> 2, 

and all their multiples. However, these numbers do not exhaust all possibilities: 

for example, (pP - 1)/(p - 1) is admissible, and is not a multiple of any p k  _ 1 

for k _> 2, if p is odd (see [Sh, Example 2.6]). But also for p = 2 there are more 

possibilities, the smallest being n = 73, mentioned in [Sh, Example 2.5]. In fact, 

a computer calculation shows that  the only admissible numbers for p = 2 which 

are less than 104 , are not proper multiples of other admissible numbers, and are 

not of the form 2 k - 1, are 73, 85, 3133 and 4369. The paper [Bar] is also relevant 

to the case p = 2. 

Although the determination of all numbers n which satisfy the condition in 

Problem 2 appears to be difficult, in [Sh] Shalev offered one step in that  direction 

by proving that  no number less than p2 _ 1 satisfies the condition. We offer one 

further step by proving, in Section 3, that  the only numbers less than pa _ 1 (for 

p > 3) which satisfy the condition are multiples of p2 _ 1. 

In the final section of this paper we briefly discuss to what extent these results 

may admit  generalization. 

ACKNOWLEDGEMENT: I am grateful to the referee for his useful comments. 



Vol. 132, 2002 NONSINGULAR DERIVATIONS 267 

2. Nonsingular derivations of non-nilpotent Lie algebras 

All Lie algebras in this paper are finite-dimensional of prime characteristic. 

THEOREM 2.1: Let a, 3 C Fp with 0~/~ -1 ~ Fp and let n be the least common 

multiple of the (multiplicative) orders of/~ and a + A/~ when A ranges over Fp. 

Then there exists a (soluble) non-nilpotent Lie algebra over Fp with a nonsingular 

derivation of  order n. 

Proof: We slightly modify a classical example of a soluble but not triangulable 

matrix Lie algebra (see for example [Jac, pp. 52 53], or [Sel, p. 96]). Our example 

also appeared in [Win, p. 142]. 

Let M be a p-dimensional vector space over Fp with base e l , . . . ,  ep, and let 

E,  F be the linear transformations of M defined by eiE = ei+l (indices modulo 

p), and e i F =  (a + i/~)ei. The transformations E and F span a two-dimensional 

soluble Lie algebra, which has M as a right module. Let L be the semidirect 

sum of M and (E) with respect to this action. Then F acts on L as a derivation, 

with eigenvalues/~ on (E}, and c~ + A/~ for A E Fp on M. The assertion about 

the order of the derivation follows. | 

Remark 2.2: In [Sh, Lemma 2.2] Shalev shows, by using Engel's theorem, 

that if a non-nilpotent Lie algebra has a nonsingular derivation D of order 

prime to p, then the set S of its eigenvalues must contain a whole affine Fp- 

line {a + A~: A E Fp }. In our example, in addition to the line S contains one 

further element (namely the difference of two points of the line, say/3). A closer 

look at the the proof of [Sh, Lemma 2.2] shows that this is indeed necessary. The 

nilpotency of a Lie algebra with a nonsingular derivation whose set of (general- 

ized) eigenvalues is contained in an affine Fp-line also follows from the following 

more general fact. If there is a maximal Fp-subspace in Fp which contains no 

eigenvalue of D, the cosets of that subspace give rise to a grading of L on the 

additive group of Fp, where the component of degree zero is trivial. This implies 

that L is nilpotent, according to Higman's proof of his theorem on Lie rings with 

a fixed-point-free automorphism of prime order [Hig]. 

COROLLARY 2.3: Let p be a prime number and let n be a positive integer, prime 

to p. The following statements are equivalent: 

1. there exists a non-nilpotent Lie algebra of  characteristic p with a non- 

singular derivation of  order n; 

2. there exists an element ~ E Fp such that (~ + A) n = 1 for all A E Fp; 
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3. t h e r e  e x i s t s  an  e l e m e n t  c E ~p s u c h  t h a t  x p - x - c  d i v i d e s  x ~ - 1 as e l e m e n t s  

o f  t h e  p o l y n o m i a l  r i n g  Fp [x]. 

Proof ' .  It  is proved in [Sh, Lemma 2.2] that  the first s tatement implies the 

second. 

If the second statement is true, Theorem 2.1 asserts the existence of a non- 

nilpotent Lie algebra L with a nonsingular derivation D of order m, the least 

common multiple of the orders of a + A for A E F p .  Since n is a multiple of m, 

it is easy to construct a Lie algebra with a nonsingular derivation of order n, 

for example, as suggested in [Sh], the tensor product L |  F [ x ] / ( x  n - 1) with 

the derivation D | x (acting on the second factor as multiplication by x). An 

alternative construction, which may increase less the dimension, is forming the 

direct sum of L with an abelian Lie algebra, on which the derivation acts as a 

(nonsingular) linear map of order n. 

The equivalence of the second and third statements is easy. In fact, the third 

s tatement  follows from the second one by taking c = ol p --  Ol. In the other 

direction, suppose that  the third statement holds, and let a C Fp be a root of the 

polynomial x p - x - c. Then I-/~_l(x - a - A) = ( x  - ol) p - -  ( Z  - -  O l )  = X p - -  X - -  C 

divides x ~ - 1 = 1-Ipen(x - p), where R is the set of n th  roots of unity in FB, and 

the conclusion follows. | 

In particular, Corollary 2.3 gives an affirmative answer to the final 

question of Shalev's paper, namely, there exists a finite-dimensional (soluble) 

non-nilpotent Lie algebra of characteristic p with a nonsingular derivation of 

order (pP - 1 ) / ( p -  1) i fp  is odd, and of order 73 i f p  = 2. 

3. T h e  o r d e r s  s m a l l e r  t h a n  p3 

According to the result of the previous section, the possible orders of nonsingular 

derivations of non-nilpotent Lie algebras of characteristic p are those positive 

integers n such that  x n' - 1, where n r denotes the p ' -par t  of n, is divisible by 

some polynomial of the form x p - x - c. Let A/'p denote the set of such possible 

orders. 

We will determine all elements of Alp which are smaller than p3; more precisely, 

we will show that  they are the multiples of p2 _ 1, and p3 _ 1, for p > 3. (When 

p -- 3 one has to include (33 - 1)/2, since (pP - 1 ) / ( p -  1) E Alp always, as shown 

in [Sh, Example 2.6].) 

I t  is shown in [Sh] that  Xp contains no element smaller than p2 _ 1. Shalev's 

proof consists of reducing the polynomial x n modulo x p - x - c and showing that  
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the  resul t  cannot  be 1 if n < p2 _ 1. In  one of two cases this  is done by  per forming  

a b inomia l  expans ion  and  showing t h a t  a cer ta in  b inomia l  coefficient is nonzero.  

This  pa r t  of the  p roof  appea r s  to  be ha rd  to  general ize to  larger  values of n. 

We offer here a var ia t ion  of Shalev ' s  p roof  which does not  require  any b inomia l  

expans ion  and i l lus t ra tes  our  technique:  r a the r  t h a n  jus t  using the  congruence 

x n - 1 (mod x p - x - c)  as in [Sh], we will make  full use of the  congruences 

X m ' b n  ~-- X m (mod X p - -  X - -  C) .  

LEMMA 3.1: S u p p o s e  n E A lp  satis/ ies n < p2. T h e n  n = p2  _ 1. 

P r o o f ' .  Let c E Fp be  such t h a t  x n _-- 1 (mod x p - x - c ) .  All  congruences in 

the  present  p roof  should be unde r s tood  modu lo  x p - x - c .  

Note t ha t  powers x m with  m a power o f p  are easy to reduce modulo  x p - x -  c .  

In fact,  X p2 ~-- ( X  + C) p = X p "~ C p ~-  X -~- C -~- C p and,  more  generally,  X pl - -  = 

x + c +  . . .  + c p~ - I .  

Wri te  n = a l p  + ao ,  with  0 < ao, as < p. Suppose  first t ha t  ao + a l  < p. Af ter  

replac ing x p with  x + c, the  congruence x n = ( x p ) a l x  a~ --- 1 becomes 

( x  + c ) a l x  ~~ - 1. 

Since b o t h  members  are po lynomia l s  of degree less t han  p, we ob t a in  a0 = a l  = 0, 

con t rad ic t ing  the  fact t ha t  n is a posi t ive  integer.  

Now suppose  t ha t  a0 + as _> p. Then  the congruence x p2 - -  x p 2 - n  becomes  

x + c + c p - ( x  + c ) p - l - a l x P - a o  

because  the  p-adic  expans ion  o f p  2 - n is p2 _ n = ( p -  1 - a l ) p +  ( p -  a o ) .  Both  

member s  are  po lynomia l s  of degree less t han  p, because  ( p -  1 - a l )  + ( p -  a0) < p. 

Therefore,  the  congruence must  be an equali ty.  Since x + c + c p and x + c are 

copr ime (as c is nonzero),  we conclude t ha t  a0 = a l  = p - 1, as desired.  | 

Now we use the  same m e t h o d  of p roof  of L e m m a  3.1 to de te rmine  all  e lements  

of Alp which are smal ler  t han  p3. We will ac tua l ly  give a s l ight ly  s t ronger  for- 

mula t ion .  We recall  t ha t  the  order  of a po lynomia l  f ( x )  E Fp[X] with  nonzero 

cons tan t  t e rm  is the  smal les t  posi t ive  integer  n such t ha t  f ( x )  divides  x n - 1 in 

]Fp [x]. W h e n  we ta lk  abou t  the  order  of a po lynomia l  we shall  impl ic i t ly  assume 

tha t  i ts cons tan t  t e rm  is nonzero. I f  f ( x )  has no mul t ip le  roots ,  the  order  of 

f ( x )  coincides wi th  the  order  of the  subgroup  of ~p genera ted  by the roots  of 

f ( x )  and,  in par t i cu la r ,  is p r ime  to p. Since x p - x - c has no mul t ip le  roots ,  

it  follows from Coro l la ry  2.3 t ha t  the  numbers  in Af~ are exac t ly  all mul t ip les  of 
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the possible orders of polynomials of the form x p - -  X - -  C. Furthermore,  since 

the roots  of x p - x - c form an aifine Fp-line with direction 1 in ~v (see the last 

par t  of the proof  of Corollary 2.3), the set Alp has also the following geometric 

interpretation: the numbers  in J~p are the orders of subgroups of ~p generated 

by a single affine Fp-line with direction 1, and their multiples. 

LEMMA 3.2: L e t  p b e  a p r i m e  g r e a t e r  t h a n  3, a n d  s u p p o s e  t h a t  t h e  p o l y n o m i a l  

x p - x - c C Fp has order  n < p 3  T h e n  n = p2 _ 1, o r  n - -  p3 _ 1. 

P r o o f :  All congruences in the present proof  should be unders tood modulo 

x P - - x - - c .  

Write n in its p-adic expansion n = a 2 p  2 + a l p  + ao ,  with 0 ~ ao, a l ,  a2 < p. 

It  will be convenient to shorten this as n = (a2, al ,  a0). 

(1) If  a0 + al  + a2 < p, we simply reduce modulo x p - x - c the congruence 

x n =- 1, thus obtaining 

(X + C + C;)a=(X + C)a~X a~ = 1. 

Since both  members  are polynomials of degree less than  p, we obtain ao = 

al = a2 = 0, which is impossible. 

(2) Another  easy case is when ao + a l  + a 2  > 2 p -  2. Then  we reduce 

modulo  x p - -  X - -  C the congruence x p3 - -  x p 3 - ~ .  Noting tha t  p3 _ n = 

( p  - 1 - a 2 , p  - 1 - a l , p  - ao), we obtain 

X -~- C ~- cP  ~-  c p2 ~ ( X -~- C -~- cP )P--  I - -a2  ( x --~ c )P--  I - - a l  X p - a O  . 

Since the second member  has degree less than p, it must  have degree 1 like 

the first member,  and we conclude tha t  a0 = a~ = a2 = p -  1, tha t  is, 

n = p 3 - 1 .  

To proceed further, we will need to use the congruence x m+n = x "~ in all 

possible ways. If  m = ( . . . , b2 ,  bl, bo) is the p-adic expansion of m, then the 

expansion of the sum m + n is ( . . . ,  c2, cl, c0), where the digits ci are determined 

inductively by the rule 

ai + b~ if ai + bi < p and c~-1  >_ a i - 1  + b i - 1 ,  

a~ + b~ - p if ai + bi _> p and c i - 1  >_ a i - x  + b i - x ,  

c ~ =  a ~ + b i + l  i f a i + b i < p - l a n d c ~ _ l  < a i - l + b ~ - ~ ,  
ai + bi - p + 1 if ai + bi _> p - 1 and c i - 1  < a~_ 1 + b i - 1 ,  

where a - l , b - l , c - 1  are assumed to be zero. In fact, ci  < ai  + b~ occurs exactly 

if a c a r r y  has been produced by adding up ai and bi,  possibly together  with a 
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previous carry. Note, however, that this is also equivalent to the fact that  c~ < bi 

together with ai < p - 1. 

In the most general situation, reduction modulo x p - x - c of the congruence 
X •q-n  ~ X m yields 

xCo(x + c)Cl(x + c + cp)c~. . .  _= xbO(x+c)b'(x+c+cP)b~ . . . .  

Since all factors appearing here are coprime to x p - x - c (for example, because 

x + c +  c p + . . .  + c p~-I -- x + c~ p~ - a ,  where a is any root of x p - x - c ) ,  any factors 

appearing on both sides of the congruence can be cancelled. It follows that we 

may assume that at least one digit of each pair bi, ci vanishes. Also, a moment's 

thought shows that it does not pay to have any carries left of c3 (say, for example, 

trying to use the congruence x p4 - -  x p 4 - n  in case (2) above), for the right member 

of the congruence would then always have degree at least p. So the congruences 

at our disposal are essentially 8 (two of which we have already seen above), each 

of them being determined by which digit additions produce a carry. To save on 

words, w e w i l l i d e n t i f y e a c h o f t h e m b y w r i t i n g t h e m a t r i x  [ : ' "  clbl c0b~ o f the  

digits of the two exponents in the congruence X m + n  ~ X m that  we are using, 

its reduction modulo x p - x - c, and the consequences which we can draw for 

a0, as, a2 (possibly a contradiction) when both members have degree less than p. 

We will omit the actual argument, which will be the same in each case: when both 

members have degree less than p, they must be equal as polynomials, and unique 

factorization together with the fact that x ~ x + c ~ x + c + c p ~ X "-[- C + C p + C p2 

the desired conclusion. We have already seen the cases of r 01 yields 
L a2 a l  a0 ] 

and [ p - l - a 2  p - l - a 1  0 0 0 " 

(3) The exponents la2 + 1 P-0as  ao0] give the congruence 

(~ + ~ + c ' ) ~ + %  ~~ - (x + c F  - ~ ' .  

If a0 + a2 < p - -  1 and al > 0 we obtain a contradiction. 

[ p - a 2  0 P O a ~  1 give the congruence (4) The exponents 1 0 al + 1 

(x + c + c~ + c ~ ) ( x  + c) a ,+ l  -- (~ + ~ + ~ ) p - ~  ~-~ 

If ao + a2 ) p and al < p - 2 we obtain a contradiction. 

[ P - a 2  0 0 l  g i u e t h e c o n g r u e n c e  (5) The exponents 1 0 al ao 

(X  -~- C + C p + c P 2 ) ( X  Jr c ) a I x  a~ ~ (X  -I- C -[- cP)  p - a e  . 
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If  ao + al  < p - 1 and a2  > 0 we obtain a contradiction. 

(6) The exponents [ a 2 + 1  p - l - a l O  P O a ~  give the e~ 

( X "Jr C "-[- CP ) a2+ l ~-- ( X "4- c)P--I--alx p-a~ 

If  a o + a l  > p -  1 and a2 < p -  1 we obtain a contradict ion unless cP+c = O, 
ao + a2 = p -  1 and al  = p -  1, in which case n = (a2 + 1) (p2 _ 1). However, 

from x p2 =- x + c + c p = x we conclude tha t  n = p2 _ 1. 

(7) The exponents [a2 ai  + 1 P - a ~  give the c ~  

(x-{-c-~ cp)a2(x ~r-c) al§ ~__ XP--ao. 

If  al  + a2 < p -- 1 and ao > 0 we obtain a contradiction. 

[ P - l - a 2  p - a 1  O] givethecongruence (8) The exponents 1 0 0 ao 

(X + e -{- C p + cP2)x a~ ~_ (x  + c + c P ) P - I - a 2 ( x  + C) p-a1 . 

If  al  + a2 > p - 1 and ao < p - 1 we deduce tha t  ao + a2 = p - 1 and 

al  ~- p - 1. Just  as in case (6), we conclude tha t  n = p2 _ 1. 

I t  is now easy to see tha t  all possibilities for (a2, al ,  ao) are covered by the above 

cases (and none of the cases is superfluous), except ao -- al  = a2 -- (p - 1)/2. 

In fact, apar t  from this exception, at  least one of the numbers  ao + al ,  ao + as, 

a l  + a2 will be either less than  or more than  p -  1, and we fall into (at least) one 

of the cases above (the slight deviation of case (4) from the apparent ly  general 

pa t te rn  is not  a problem, since if bo th  a0 + al and al  + a2 equal p - 1, then 

ao + a2 will be even, and hence never equal to p). 

To deal with the unfor tunate  exception of ao = al : a2 = ( p -  1)/2 we are 

forced to perform one further reduction modulo x p - x - c. We have 

X n ~--(X + C + cP)(P-1)/2(X + c)(P--1)/2X (p-1)/2 

=x(P-1)/2 ~i ( (P- i i ) /2)x ic(P-1) /2- i .  

. ~. ( ( p j I ) / 2 ) x J ( c  + cP)(P-I)/2-J. 

3 

This is a polynomial  in x of degree 3(p - 1)/2, with no terms of degree less than  

(p - 1)/2. Therefore, only its two terms of highest degree, namely 

x(3p--3)/2.-[- ( - - C - ~ - P ~ 2  lcP)x(3p--5) /2 ,  
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will affect the  t e rm  of degree (p - 3 ) /2  of i ts  r educ t ion  modulo  x p - x - c ,  which 

will thus be 

c x ( p - 3 ) / 2 - 4 - ( - c - ~ - P ~ 2 1 c p )  x ( p - 3 ) / 2 - p - I C p x ( p - 3 ) / 2 " 2  

Since c # 0 and  p > 3, the  reduced po lynomia l  cannot  be 1, and  we reach a 

cont radic t ion .  I 

R e m a r k  3 .3 :  Note t h a t  a var ia t ion  of the  above proof,  which would have pe rhaps  

s implif ied the  discussion slightly, would be  expand ing  n into a p-adic  form wi th  

digi ts  of b o t h  signs and  abso lu te  value less t han  p /2 .  Our  approach  has the  

advan tage  of showing t ha t  the  congruence x m + n  - x TM has been used in all  

possible  ways. 

COROLLARY 3.4: Let  p > 3 and  s u p p o s e  t ha t  n E ./~fp s a t i s f i e s  n < p3 .  T h e n  n 

is e i ther  p3 _ 1, or  a m u l t i p l e  o f p  2 - 1. 

In  the  s i tua t ion  of L e m m a  3.2 bu t  for p = 3, besides the  cases n = 3 2 - 1 and 

n = 3 3 - 1 we mus t  allow for the  poss ib i l i ty  t h a t  n = (3 3 - 1) /2  = 13. W h e n  

n = 13, the  final a rgumen t  in the  proof  of L e m m a  3.2 also yields t h a t  c = 1. 

However,  this  is jus t  one case of an easily proved general  fact: for any pr ime  p, 

there  is exac t ly  one po lynomia l  of the  form x p - x - c E Fp  [x] whose order  divides  

(pP - 1 ) / (p  - 1), namely  x p - x - 1. Incidental ly ,  i t  is also easy to prove t ha t  the  

order  of x p - x - c cannot  d ivide  any number  of the  form ( p k  _ 1) / (p  -- 1) for p 

odd  and  k < p. 

4. Final  remarks 

We will po in t  out  to  wha t  ex tent  and  in which d i rec t ions  L e m m a  3.2 and  

Coro l la ry  3.4 could be general ized.  

For  some t ime  we mis taken ly  bel ieved in the  following s t a t emen t :  the  e lements  

of Hp which are  smal ler  t han  pP are e i ther  mul t ip les  of pi _ 1 for some 1 < i < p, 

or mul t ip les  of (pP - 1 ) / (p  - 1). In  fact,  this  is ce r ta in ly  t rue  for p = 3 because  

of Coro l la ry  3.4, and  can be shown to be t rue  also for p --  5, wi th  the  help of 

a compute r .  However,  such a s t rong s t a t e m e n t  a l r eady  fails for p --  7, as the  

following example  shows. 

E x a m p l e  4 .1 :  We have (75 - 1) /2  E NT. In fact,  a compu te r  ca lcu la t ion  shows 

t ha t  the  order  of x 7 - x - c in charac ter i s t ic  7 d ivides  (75 - 1) /2  if and  only if c 

is a roo t  of the  po lynomia l  

c 15 + 2c 12 -4- 6c 9 + 6c 6 + 3c 3 + 6 

= (c 5 + c 3 + 3c 2 + 5c + 5)(c 5 + 2c 3 -4- 3c 2 + 6c + 3)(c 5 + 4c 3 -4- 3c 2 + 3c + 6). 
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Actually, for such values of c the order of x 7 -  x -  c is exactly ( 7 5 - 1 ) / 2 ,  since one 

can check tha t  no other proper  divisor of 75 - 1 can be the order of a tr inomial  

of tha t  form. 

Similarly, one can compute  tha t  the order of x 11 - x - c in characteristic 11 is 

(115 - 1)/2 if and only if c is a root  of c 5 + 7 (and such order cannot  be any other  

proper  divisor of 115 - 1). Hence (115 - 1)/2 belongs to All1. However, one can 

also check that  (135 - 1)/2 • All3. 

Example 4.1 also shows tha t  a direct extension of Lemma 3.2, showing tha t  

the only possible values n < p5 for the order of the polynomial  x p - x - c E Fp are 

numbers  of the form n = pi _ 1, would require at  least p > 11 as an assumption.  

We have reasons to believe tha t  a similar assertion describing the possible orders 

n < p4 should be true for all p > 3, though our method  of proof  of Lemma 3.2 

appears insufficient to deal with tha t  case. 

More generally, we propose the following question. 

QUESTION 4.2: G i v e n  an  i n t e g e r  r > 1, is  i t  t rue  for  al l  s u t t i c i e n t l y  large p r i m e s  

p t h a t  al l  p o s s i b l e  va lues  n < pr  for  t he  order o f  the  p o l y n o m i a l  x p - x - c E Fp 

h a v e  t h e  f o r m  n = pi _ 1 ? 

I t  is perhaps worth not ing tha t  this is true if we restrict our a t tent ion to those 

n which divide p~ - 1 (instead of all n < pr). This is an immediate  consequence 

of  the following result of  H. Davenpor t  [Dav, Theorem 1]: given k > 1, if the 

prime p is sufficiently large (depending only on k) and Fpk ---- Fp (a),  then there 

exists A C Fp such tha t  a + A is a primitive element of Fpk (that  is, a generator  

of ~pk )- In fact, if x p - x - c has order a divisor n of p~ - 1 and a is one of its 

roots, then Fp (a) = Fpk for some divisor k of r, and Fpk contains all the roots of 

tha t  polynomial;  Davenpor t ' s  theorem applied to all subfields Fpk of FB, (whose 

number  is independent of p) implies tha t  at  least one of  the roots  is primitive, 

and so n = pk _ 1, provided p is larger than  a bound  which depends only on r. 

Of  course, Question 4.2 is much stronger than  this. In case it turns out to be 

false in general, it would nevertheless be interesting to determine the highest r 

for which its s ta tement  is true. 

References 

[AF] A. A. Albert and M. S. Frank, S imple  Lie  algebras o f  eharacterist ic  p, Rendiconti 
del Seminario Matematico Universit~ e Politecnico di Torino 14 (1954-55), 
117-139. 



Vol. 132, 2002 NONSINGULAR DERIVATIONS 275 

[Bar] 

[BKK] 

[Day] 

[Hig] 

[Jac] 
[LGN] 

[Sell 

[Sh] 

[Shl] 

[Sh2] 

[Win] 

L. Bartholdy, Lamps, Factorizations, and Finite Fields, The American Mathe- 
matical Monthly 107 (2000), 429 436. 

G. Benkart, A. I. Kostrikin and M. I. Kuznetsov, Finite-dimensional simple Lie 

algebras with a nonsingular derivation, Journal of Algebra 171 (1995), 894 916. 

H. Davenport, On primitive roots in finite fields, Quarterly Journal of Mathe- 
matics 8 (1937), 308 312. 

G. Higman, Groups and rings which have automorphisms without nontrivial 

fixed elements, Journal of the London Mathematical Society 32 (1957), 321 
334. 

N. Jacobson, Lie Algebras, Wiley-Interscience, New York, 1962. 

C. R. Leedham-Green and M. F. Newman, Space groups and groups of prime 

power order L Archiv der Mathematik 35 (1980), 193-202. 

G. B. Seligman, Modular Lie algebras, Ergebnisse der Mathematik und ihrer 
Grenzgebiete, Band 40, Springer-Verlag, New York, 1967. 

A. Shalev, The orders of nonsingular derivations, Journal of the Australian 
Mathematical Society (Series A) 67 (1999), 254 260. 

A. Shalev, The structure of finite p-groups: effective proof of the coclass 
conjectures, Inventiones Mathematicae 115 (1994), 315 345. 

A. Shalev, Simple Lie algebras and Lie algebras of maximal class, Archiv der 
Mathematik 63 (1994), 297-301. 

D. J. Winter, On groups of automorphisms of Lie algebras, Journal of Algebra 
8 (1968), 131 142. 


