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ABSTRACT

We extend the results of Shalev [Sh] on the orders of nonsingular
derivations of finite-dimensional non-nilpotent modular Lie algebras.

1. Introduction

Aner Shalev addressed the following problem in [Sh].

ProBLEM 1: Which are the possible orders n of nonsingular derivations of finite-
dimensional non-nilpotent Lie algebras of prime characteristic p?

The significance of Problem 1 is well illustrated in the Introduction of Shalev’s
paper [Sh], to which we refer for a broader discussion. Here we will just mention
a couple of relevant facts. On the one hand, the fact that n = p — 1 is not a
solution for Problem 1 plays a crucial role in the effective proof given by Shalev in
[Sh1] of the strongest of the coclass conjectures of Leedham-Green and Newman
for pro-p groups [LGN]. On the other hand, the fact that Problem 1 does have
solutions has implications for the coclass theory of Lie algebras. In fact, for all
k > 2 there exist finite-dimensional simple Lie algebras of characteristic p which
have nonsingular derivations of order p*¥ — 1, namely certain algebras discovered
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by Albert and Frank [AF] (nowadays also known as Hamiltonian of type wo, see
for example [BKK]); these were employed in [Sh2] to construct the first examples
of non-soluble modular graded Lie algebras of maximal class, thus disproving the
analogues of Conjectures C and D of [LGN] for modular graded Lie algebras.

By means of an application of Engel’s theorem, Shalev showed that Problem 1
is closely related to the following number-theoretic problem in finite fields.

PROBLEM 2: For which numbers n is there an element a € F, (the algebraic
closure of the field of p elements F,) such that (a+ A)" =1 for all A € F,,?

More precisely, Shalev proved that if a number n satisfies the condition in
Problem 1, then it also satisfies the condition in Problem 2. (This was stated
only for n prime to p, since both problems are easily reduced to this case, but
is true in general, because if n satisfies either condition, then any multiple of
n also does.) Shalev also remarked that “it is unlikely that the converse also
holds”. However, we show in Section 2 of this note that the converse actually
holds. Therefore, the two problems are fully equivalent.

From the above discussion it is clear that the admissible numbers n for Prob-
lem 1 or, equivalently, for Problem 2, include those of the form p*—1 for all k > 2,
and all their multiples. However, these numbers do not exhaust all possibilities:
for example, (p? — 1)/(p — 1) is admissible, and is not a multiple of any p* — 1
for k > 2, if p is odd (see [Sh, Example 2.6]). But also for p = 2 there are more
possibilities, the smallest being n = 73, mentioned in [Sh, Example 2.5]. In fact,
a computer calculation shows that the only admissible numbers for p = 2 which
are less than 10%, are not proper multiples of other admissible numbers, and are
not of the form 2% —1, are 73, 85, 3133 and 4369. The paper [Bar] is also relevant
to the case p = 2.

Although the determination of all numbers n which satisfy the condition in
Problem 2 appears to be difficult, in [Sh] Shalev offered one step in that direction
by proving that no number less than p? — 1 satisfies the condition. We offer one
further step by proving, in Section 3, that the only numbers less than p® — 1 (for
p > 3) which satisfy the condition are multiples of p? — 1.

In the final section of this paper we briefly discuss to what extent these results
may admit generalization.

ACKNOWLEDGEMENT: I am grateful to the referee for his useful comments.
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2. Nonsingular derivations of non-nilpotent Lie algebras

All Lie algebras in this paper are finite-dimensional of prime characteristic.

THEOREM 2.1: Let o, 3 € F, with af~! ¢ F, and let n be the least common
multiple of the (multiplicative) orders of 8 and o + A\ when X ranges over F,.
Then there exists a (soluble) non-nilpotent Lie algebra over F,, with a nonsingular
derivation of order n.

Proof: We slightly modify a classical example of a soluble but not triangulable
matrix Lie algebra (see for example [Jac, pp. 52-53], or [Sel, p. 96]). Our example
also appeared in [Win, p. 142].

Let M be a p-dimensional vector space over F, with base ey,...,e,, and let
E, F be the linear transformations of M defined by ¢;E = e, (indices modulo
p), and e;F = (o +iB)e;. The transformations FE and F span a two-dimensional
soluble Lie algebra, which has M as a right module. Let L be the semidirect
sum of M and (E) with respect to this action. Then F' acts on L as a derivation,
with eigenvalues 3 on (E), and oo+ A§ for A € F, on M. The assertion about
the order of the derivation follows. |

Remark 2.2: In [Sh, Lemma 2.2] Shalev shows, by using Engel’s theorem,
that if a non-nilpotent Lie algebra has a nonsingular derivation D of order
prime to p, then the set S of its eigenvalues must contain a whole affine F,-
line {& + A3: A € F,}. In our example, in addition to the line S contains one
further element (namely the difference of two points of the line, say 3). A closer
look at the the proof of [Sh, Lemma 2.2] shows that this is indeed necessary. The
nilpotency of a Lie algebra with a nonsingular derivation whose set of (general-
ized) eigenvalues is contained in an affine Fy,-line also follows from the following
more general fact. If there is a maximal Fy,-subspace in F, which contains no
eigenvalue of D, the cosets of that subspace give rise to a grading of L on the
additive group of IF,,, where the component of degree zero is trivial. This implies
that L is nilpotent, according to Higman’s proof of his theorem on Lie rings with
a fixed-point-free automorphism of prime order [Hig].

COROLLARY 2.3: Let p be a prime number and let n be a positive integer, prime
to p. The following statements are equivalent:
1. there exists a non-nilpotent Lie algebra of characteristic p with a non-
singular derivation of order n;
2. there exists an element a € F, such that (a + \)* =1 for all A € Fy;
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3. there exists an element ¢ € ]F; such that xP —x —c divides ™ — 1 as elements
of the polynomial ring F,[z)].

Proof: It is proved in [Sh, Lemma 2.2] that the first statement implies the
second.

If the second statement is true, Theorem 2.1 asserts the existence of a non-
nilpotent Lie algebra L with a nonsingular derivation D of order m, the least
common multiple of the orders of a + A for A € F,. Since n is a multiple of m,
it is easy to construct a Lie algebra with a nonsingular derivation of order n,
for example, as suggested in [Sh], the tensor product L ®f F[z]/(z™ — 1) with
the derivation D ® = (acting on the second factor as multiplication by z). An
alternative construction, which may increase less the dimension, is forming the
direct sum of L with an abelian Lie algebra, on which the derivation acts as a
(nonsingular) linear map of order n.

The equivalence of the second and third statements is easy. In fact, the third
statement follows from the second one by taking ¢ = of — a. In the other
direction, suppose that the third statement holds, and let o € ]F'p be a root of the
polynomial 2” —z —¢. Then [[Ji(z—a-A) = (z-a)P —(z—a)=2P -z —c
divides 2" — 1 = [ ,c g(2 — p), where R is the set of nth roots of unity in F,, and
the conclusion follows. |

In particular, Corollary 2.3 gives an affirmative answer to the final
question of Shalev’s paper, namely, there exists a finite-dimensional (soluble)
non-nilpotent Lie algebra of characteristic p with a nonsingular derivation of
order (p? —1)/(p — 1) if p is odd, and of order 73 if p = 2.

3. The orders smaller than p?

According to the result of the previous section, the possible orders of nonsingular
derivations of non-nilpotent Lie algebras of characteristic p are those positive
integers n such that 2" — 1, where n' denotes the p'-part of n, is divisible by
some polynomial of the form zP — z — ¢. Let N, denote the set of such possible
orders.

We will determine all elements of AV, which are smaller than p?; more precisely,
we will show that they are the multiples of p?> — 1, and p?® — 1, for p > 3. (When
p = 3 one has to include (3% — 1)/2, since (p? —1)/(p— 1) € N, always, as shown
in [Sh, Example 2.6].)

It is shown in [Sh] that A, contains no element smaller than p*> — 1. Shalev’s
proof consists of reducing the polynomial £™ modulo zP — x — ¢ and showing that
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the result cannot be 1if n < p?>—1. In one of two cases this is done by performing
a binomial expansion and showing that a certain binomial coefficient is nonzero.
This part of the proof appears to be hard to generalize to larger values of n.
We offer here a variation of Shalev’s proof which does not require any binomial
expansion and illustrates our technique: rather than just using the congruence
2" =1 (mod z? — x — ¢) as in [Sh], we will make full use of the congruences
™" =™  (mod xP — x — ¢).

LEMMA 3.1: Suppose n € N, satisfies n < p?. Thenn=p? — 1.

Proof: Let ¢ € F, be such that " =1 (mod z? — x — ¢). All congruences in
the present proof should be understood modulo 27 —x — ¢.

Note that powers ™ with m a power of p are easy to reduce modulo 27 —x —e.
In fact, 2P’ = (z+¢c)P = 2P+ ¢? = x4 c+ ¢ and, more generally, 2P =
zHct+- P

Write n = a1p + ag, with 0 < ag,a; < p. Suppose first that ag + ay < p. After

replacing #” with z + ¢, the congruence 2" = (2P)%1 1% = 1 becomes
P g g
(x+ )"z =1.

Since both members are polynomials of degree less than p, we obtain ag = a; = 0,
contradicting the fact that n is a positive integer.
Now suppose that ag + a3 > p. Then the congruence 2P’ = 2P ~™ becomes

T+c+ P = (x4 )P ITugP0

because the p-adic expansion of p? —nisp?—n = (p—1—a;)p+ (p— ap). Both
members are polynomials of degree less than p, because (p—1—ay)+(p—ap) < p.
Therefore, the congruence must be an equality. Since z + ¢+ ¢? and z + ¢ are
coprime {as ¢ is nonzero), we conclude that ag = a; = p — 1, as desired. [ |

Now we use the same method of proof of Lemma 3.1 to determine all elements
of NV, which are smaller than p?. We will actually give a slightly stronger for-
mulation. We recall that the order of a polynomial f(x) € F,[z] with nonzero
constant term is the smallest positive integer n such that f(x) divides 2™ — 1 in
Fp [z]. When we talk about the order of a polynomial we shall implicitly assume
that its constant term is nonzero. If f(x) has no multiple roots, the order of
f(z) coincides with the order of the subgroup of IF";, generated by the roots of
f(z) and, in particular, is prime to p. Since 2 — x — ¢ has no multiple roots,
it follows from Corollary 2.3 that the numbers in A, are exactly all multiples of
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the possible orders of polynomials of the form 2P — x — ¢. Furthermore, since
the roots of P — z — ¢ form an affine F,,-line with direction 1 in ]ﬁ‘; (see the last
part of the proof of Corollary 2.3), the set A, has also the following geometric
interpretation: the numbers in A, are the orders of subgroups of ]F‘;, generated
by a single affine F,-line with direction 1, and their multiples.

LEMMA 3.2: Let p be a prime greater than 3, and suppose that the polynomial
P~z —c€F, hasordern <p®. Thenn=p*> -1, orn=p*—1.

Proof:  All congruences in the present proof should be understood modulo
2P —xr—c
Write n in its p-adic expansion n = asp? + ajp + ag, with 0 < ag,a;,as < p.
It will be convenient to shorten this as n = (as, ay, ap).
(1) If ap + a1 + az < p, we simply reduce modulo 2 — = — ¢ the congruence
2™ =1, thus obtaining

(x4+c+P)2(x+c)Mz™ =1

Since both members are polynomials of degree less than p, we obtain a¢ =
@1 = a3 = 0, which is impossible.

(2) Another easy case is when aq + a1 + a2 > 2p — 2. Then we reduce
modulo zP — z — ¢ the congruence P = P Noting that p®> —n =
(p—1-—az,p—1—a1,p— ap), we obtain

Thct P+ = (zHc+ P)PTIT (g 4 )P Ul

Since the second member has degree less than p, it must have degree 1 like
the first member, and we conclude that ag = a; = ag = p — 1, that is,
n=p>—-1
To proceed further, we will need to use the congruence z™*" = z™ in all
possible ways. If m = (...,bo,by,bg) is the p-adic expansion of m, then the
expansion of the sum m+mn is (..., co, 1, ¢0), where the digits ¢; are determined
inductively by the rule

a; +b; if a; + b; < pand ci_1 2 aj—1 + b1,
o= d it bi—p if a; +b; > p and ¢;—y > @1 + bi—1,
' a; +b;+1 ifa;+b; <p—1land ¢y <a;_1+bi_1,

a;+b;—p+1 fa;+b;>p—1andc_1 <ai—1+bi_1,

where a_1,b_1,c_y are assumed to be zero. In fact, ¢; < a; + b; occurs exactly
if a carry has been produced by adding up a; and b;, possibly together with a
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previous carry. Note, however, that this is also equivalent to the fact that ¢; < b;
together with a; < p—1.

In the most general situation, reduction modulo P — x — ¢ of the congruence
™ = g™ yields

(x4 c) (x+ct+ ) =@+ o) (et )2,

Since all factors appearing here are coprime to z” — x — ¢ (for example, because
zHetcP 4P =z+aP — @, where « is any root of £ —x —¢), any factors
appearing on both sides of the congruence can be cancelled. It follows that we
may assume that at least one digit of each pair b;, ¢; vanishes. Also, a moment’s
thought shows that it does not pay to have any carries left of ¢3 (say, for example,
trying to use the congruence aP' = 2"~ in case (2) above), for the right member
of the congruence would then always have degree at least p. So the congruences
at our disposal are essentially 8 (two of which we have already seen above), each
of them being determined by which digit additions produce a carry. To save on

words, we will identify each of them by writing the matrix [ b I;O] of the

. (55} 0
digits of the two exponents in the congruence z™*" = z™ that we are using,

its reduction modulo z? — x — ¢, and the consequences which we can draw for
ag, a1, ag {possibly a contradiction) when both members have degree less than p.
We will omit the actual argument, which will be the same in each case: when both
members have degree less than p, they must be equal as polynomials, and unique

factorization together with the fact that z # z+c# r+c+cP £z +c+cP+cP
yields the desired conclusion. We have already seen the cases of 0 a 0?
2 a1 ag
p—l—-ay p—1l—-a1 p-ao
and [1 0 0 0 ] .

(3) The exponents [ p-a 0

as +1 0 @0] give the congruence

(x4 c+ )2tz = (z + )P,
If ag +as < p—1 and a; > 0 we obtain a contradiction.

(4) The exponents [ p= a2 0

1 0 a +1 p ‘6@0} give the congruence
1

@+c+ P+ ) z+ o) = (24 ¢+ P)PP2gP%,

If ag + as > p and a; < p — 2 we obtain a contradiction.
p—ay 0 0

(5) The exponents [1 0 @ a

] give the congruence

(x+c+c” +c”2)(x+ c)*x® = (x4 e+ PP,
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If ag+ a1 < p—1 and a2 > 0 we obtain a contradiction.
p—1l—a1 p-a

(6) The exponents o+ 1 0 0

0] give the congruence

(x+c+ cp)az+l =(z+ c)p—l—axxp—ao_

If ap+ay > p—1 and a; < p—1 we obtain a contradiction unless ¢ +¢ = 0,
ap+as = p—1and a; = p—1, in which case n = (az+1)(p? —1). However,
from 2P° = z + ¢ + ¢® = x we conclude that n = p? — 1.

(7) The exponents [a a4 1 p _an] give the congruence
2 01

(x4 c+ ) (x + )t = gP~%,

If a; + as < p—1 and a¢ > 0 we obtain a contradiction.
p~1l-a p—a

1 0 0 give the congruence

(8) The exponents [

(z+ct+ P+ )% = (z+c+ PP 1% (g 4 )P,

If ay + a2 > p—1 and ag < p — 1 we deduce that ap + a2 = p— 1 and
a; = p— 1. Just as in case (6), we conclude that n = p? — 1.

It is now easy to see that all possibilities for (az, a1, ag) are covered by the above
cases (and none of the cases is superfluous), except a9 = a1 = az = (p — 1)/2.
In fact, apart from this exception, at least one of the numbers ag + a1, ag + a2,
a1 + a2 will be either less than or more than p — 1, and we fall into (at least) one
of the cases above (the slight deviation of case (4) from the apparently general
pattern is not a problem, since if both ag + a; and ay + a2 equal p — 1, then
ap + az will be even, and hence never equal to p).

To deal with the unfortunate exception of ag = a; = a3 = (p — 1)/2 we are
forced to perform one further reduction modulo x? — x — ¢. We have

2" =(z 4 ¢+ ) PV/2 (g 4 ¢)P= D/ 20172

—(p=1)/2 (P—1/2\ _; p-1)/2-i.
" Z( D) e

i

5 <(p - ,1)/2>xj(c + p)o-D/2-5

; J

This is a polynomial in x of degree 3(p — 1)/2, with no terms of degree less than
(p — 1)/2. Therefore, only its two terms of highest degree, namely

£@=3)/2 | ( —eqt ?__;_lcp) 2G=5)/2,
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will affect the term of degree (p — 3)/2 of its reduction modulo z? — z — ¢, which
will thus be

cx®P3)/2 4 ( —c+ p%lcp)x(zr—?»)/? - p%lcpx(z’—fi)/?_

Since ¢ # 0 and p > 3, the reduced polynomial cannot be 1, and we reach a
contradiction. 1

Remark 3.3: Note that a variation of the above proof, which would have perhaps
simplified the discussion slightly, would be expanding n into a p-adic form with
digits of both signs and absolute value less than p/2. Our approach has the
advantage of showing that the congruence z™*" = z™ has been used in all
possible ways.

COROLLARY 3.4: Let p > 3 and suppose that n € N, satisfies n < p>. Then n
is either p® — 1, or a multiple of p? — 1.

In the situation of Lemma 3.2 but for p = 3, besides the cases n = 3% — 1 and
n = 3% — 1 we must allow for the possibility that n = (3% — 1)/2 = 13. When
n = 13, the final argument in the proof of Lemma 3.2 also yields that ¢ = 1.
However, this is just one case of an easily proved general fact: for any prime p,
there is exactly one polynomial of the form #? — z — ¢ € F,[z] whose order divides
(p? —1)/(p— 1), namely 2P — x — 1. Incidentally, it is also easy to prove that the
order of 2P — x — ¢ cannot divide any number of the form (p* — 1)/(p — 1) for p
odd and k < p.

4. Final remarks

We will point out to what extent and in which directions Lemma 3.2 and
Corollary 3.4 could be generalized.

For some time we mistakenly believed in the following statement: the elements
of NV, which are smaller than p” are either multiples of p’ — 1 for some 1 < i < p,
or multiples of (p? — 1)/(p — 1). In fact, this is certainly true for p = 3 because
of Corollary 3.4, and can be shown to be true also for p = 5, with the help of
a computer. However, such a strong statement already fails for p = 7, as the
following example shows.

Example 4.1: 'We have (75 —1)/2 € N7. In fact, a computer calculation shows
that the order of 7 — x — c in characteristic 7 divides (75 — 1)/2 if and only if c
is a root of the polynomial

¢ +2¢2 +6¢° +6c°+3c*+6
= (A +A+3c2+5c+5)(c® + 23+ 3¢ + 6¢+ 3)(c® + 4c® + 3¢2 + 3¢+ 6).
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Actually, for such values of ¢ the order of 7 —x —c is exactly (7% —1)/2, since one
can check that no other proper divisor of 7° — 1 can be the order of a trinomial
of that form.

Similarly, one can compute that the order of 2!! — z — ¢ in characteristic 11 is
(11° —1)/2 if and only if ¢ is a root of ¢®+ 7 (and such order cannot be any other
proper divisor of 11° — 1). Hence (11° — 1)/2 belongs to N7;. However, one can
also check that (13°% — 1)/2 & N3.

Example 4.1 also shows that a direct extension of Lemma 3.2, showing that
the only possible values n < p° for the order of the polynomial 2P —z —c € ]F‘,, are
numbers of the form n = p* — 1, would require at least p > 11 as an assumption.
‘We have reasons to believe that a similar assertion describing the possible orders
n < p* should be true for all p > 3, though our method of proof of Lemma 3.2
appears insufficient to deal with that case.

More generally, we propose the following question.

QUESTION 4.2: Given an integer r > 1, is it true for all sufficiently large primes
p that all possible values n < p” for the order of the polynomial P — x — ¢ € ]Fp
have the formn = p* — 17

It is perhaps worth noting that this is true if we restrict our attention to those
n which divide p” — 1 (instead of all n < p”). This is an immediate consequence
of the following result of H. Davenport [Dav, Theorem 1j: given k > 1, if the
prime p is sufficiently large (depending only on k) and F,x = F, (), then there
exists A € F, such that o + A is a primitive element of F,» (that is, a generator
of ]F;,C ). In fact, if 2”7 — x — ¢ has order a divisor n of p” — 1 and « is one of its
roots, then F, (o) = F,« for some divisor k of r, and F,« contains all the roots of
that polynomial; Davenport’s theorem applied to all subfields F,« of F,~ (whose
number is independent of p) implies that at least one of the roots is primitive,
and so n = p* — 1, provided p is larger than a bound which depends only on .

Of course, Question 4.2 is much stronger than this. In case it turns out to be
false in general, it would nevertheless be interesting to determine the highest r
for which its statement is true.
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